2019-2020 Undergraduate General Catalog


MATH - Mathematics

MATH 130 Numbers and Operations for Teachers

The focus of this course is the foundational ideas of grades K-8 mathematics. The purpose is to engage prospective teachers in (re)discovering the real number system in order to develop a deep understanding of number meanings, representation, operations, algorithms, and properties. Through intuition and imagination, rather than rigidly following prescribed methods, students will explore models for arithmetic, consideration of children’s thinking about numbers, and investigations with technology.

Credits

3

MATH 131 Geometry and Probability for Teachers (MT)

This course investigates foundational ideas of grades K-8 mathematics. The focus is on thinking about mathematical concepts that are currently prominent in elementary schools from the perspective of teaching. Mathematical tasks include a deep analysis of concepts, consideration of children’s thinking, and investigations with technology. Topics include two and three dimensional geometry, transformations,area, volume, surface area, measurements, statistics, and probability.

Credits

3

MATH 140 Quantitative Reasoning (MT)

For students with one or two years of high school algebra. This course is at the level of college algebra, but is not focused on algebra. It stresses application of mathematics in careers of non-scientists and in the everyday lives of educated citizens, covering basic mathematics, logic, and problem solving in the context of real-world applications.

Credits

3

MATH 150 Pre-Calculus (MT)

Algebra review, functions and graphs, logarithmic and exponential functions, analytic geometry, trigonometric functions, trigonometric identities and equations, mathematical induction, complex numbers. Students completing this course are prepared to enter calculus.

Credits

4

MATH 151 Calculus I (MT)

Limits and continuity for functions of one real variable. Derivatives and integrals of algebraic, trigonometric, exponential, and logarithmic functions. Applications of the derivative. Introduction to related numerical methods.

Credits

4

MATH 152 Calculus II

Techniques of integration, numerical integration, and applications of integrals. Infinite series including Taylor series. Introduction to differential equations. Calculus in polar coordinates.

Credits

4

MATH 153 Calculus III

The calculus of vector-valued functions, functions of several variables, and vector fields. Includes vector operations, equations of curves and surfaces in space, partial derivatives, multiple integrals, line integrals, surface integrals, and applications.

Credits

3

MATH 200 Foundations of Mathematics

Bridges the gap between computational, algorithmic mathematics courses and more abstract, theoretical courses. Emphasizes the structure of modern mathematics: axioms, postulates, definitions, examples conjectures, counterexamples, theorems, and proofs. Builds skill in reading and writing proofs. Includes careful treatment of sets, functions, relations, cardinality, and construction of the integers, and the rational, real, and complex number systems.

Credits

3

Prerequisites

MATH 152

MATH 220 Linear Algebra

Vector spaces, linear independence, basis and dimension, linear mappings, matrices, linear equations, determinants, Eigen values, and quadratic forms.

Credits

3

Prerequisites

MATH 152

MATH 296 Curricular Practical Training

Students on an F-1 visa are eligible to work off campus to provide additional experience so long as the employment relates directly to the student's major area of study. The practical experience gained outside the traditional classroom supplements the theoretical and/or applied knowledge as a part of the student's coursework. The registration process for this course must be completed every term (including summers), as students must have their work authorization reissued each term to ensure continued enrollment. Jobs must be approved and verified by the International Programs Office before work may begin.

Credits

0

MATH 310 Differential Equations

Methods of solving first and second order differential equations, applications, systems of equations, series solutions, existence theorems, numerical methods, and partial differential equations.

Credits

3

Prerequisites

MATH 152

MATH 315 Probability and Statistics

Probability as a mathematical system, random variables and their distributions, limit theorems, statistical inference, estimation, decision theory and testing hypotheses.

Credits

3

Prerequisites

MATH 152

MATH 320 Discrete Structures

Topics to be selected from counting techniques, mathematical logic, set theory, data structures, graph theory, trees, directed graphs, algebraic structures, Boolean algebra, lattices, and optimization of discrete processes.

Credits

3

Prerequisites

MATH 151; COSC 210

MATH 327 Mathematical Foundations of Data Science

This course explores the mathematical foundations of algorithms used in the field of Data Science, typically taken after a course in mathematical statistics. It includes the study of classification and regression techniques, robust regression, decision trees, support vector machines, neural networks, cross-validation techniques, forecasting models, and Topological data analysis. The course includes a data-driven project that requires the student to propose a question and gather, clean, and analyze data to present a response to a real-world problem.

Credits

3

Prerequisites

MATH 315; COSC 210; COSC 212

MATH 330 History of Mathematics (W)

The history of mathematics from ancient to modern times. The mathematicians, their times, their problems, and their tools. Major emphasis on the development of geometry, algebra, and calculus.

Credits

3

Prerequisites

MATH 200

MATH 335 Modern Geometry

A review of Euclidean geometry, an examination of deficiencies in Euclidean geometry, and an introduction to non-Euclidean geometrics. Axiomatic structure and methods of proof are emphasized.

Credits

3

Prerequisites

MATH 200

MATH 340 Abstract Algebra

A survey of the classical algebraic structures taking an axiomatic approach. Deals with the theory of groups and rings and associated structures, including subgroups, factor groups, direct sums of groups or rings, quotient rings, polynomical rings, ideals, and fields.

Credits

3

Prerequisites

MATH 200; MATH 220

MATH 345 Topology

An introduction to topological structures from point-set, differential, algebraic, and combinatorial points of view. Topics include continuity, connectedness, compactness, separation, dimension, homeomorphism, homology, homotopy, and classification of surfaces.

Credits

3

Prerequisites

MATH 200; MATH 220

MATH 350 Real Analysis

This course develops the logical foundations underlying the calculus of real-valued functions of a single real variable. Topics include limits, continuity, uniform continuity, derivatives and integrals, sequences and series of numbers and functions, convergence, and uniform convergence.

Credits

3

Prerequisites

MATH 200; MATH 220

MATH 355 Complex Analysis

A study of the concepts of calculus for functions with domain and range in the complex numbers. The concepts are limits, continuity, derivatives, integrals, sequences, and series. Topics include Cauchy-Riemann equations, analytic functions, contour integrals, Cauchy integral formulas, Taylor and Laurent series, and special functions.

Credits

3

Prerequisites

MATH 200; MATH 220

MATH 397 TOPICS

Topics in Mathematics.

Credits

3

MATH 490 Senior Seminar

This course reviews and correlates the courses in the mathematics major. Each student is responsible for preparing the review of one area. Students also read papers from contemporary mathematics journals and present them to the class. The course uses the ETS mathematics major exam.

Credits

1

Prerequisites

MATH 200; MATH 220