2024-2025 Undergraduate General Catalog


MATH - Mathematics

MATH 100 STEM Scholars Vocation and Math Modeling (WB2)

In this interactive two-credit course, students connect their STEM interests to social problem-solving and community-based vocational leadership. Students will participate in project-based math modeling, validating alumni panels, employer excursions, guided discussions, and small-group faculty mentoring. Through this collaborative learning, students will foster a sense of community, launch their college careers confidently, and exhibit the mindset of change agents.

Credits

2

Notes

This course represents the academic component of the new STEM Scholars Program

MATH 125 R Programming Fundamentals

Students acquire fundamental knowledge and practical experience to utilize the potential of R. Students engage in understanding data types and variables, vectors, matrices, lists, and functions. Students enhance their data manipulation skills and learn basic statistical functions and packages. Students master important topics such as logical statements, if/else statements, loops, and apply.

Credits

1

Offered

Every Interim

MATH 130 Numbers and Operations for Teachers

The focus of this course is the foundational ideas of grades K-8 mathematics. The purpose is to engage prospective teachers in (re)discovering the real number system in order to develop a deep understanding of number meanings, representation, operations, algorithms, and properties. Through intuition and imagination, rather than rigidly following prescribed methods, students will explore models for arithmetic, consideration of children’s thinking about numbers, and investigations with technology.

Credits

3

Offered

Every Fall

MATH 131 Geometry and Probability for Teachers (MT)

This course investigates foundational ideas of grades K-8 mathematics. The focus is on thinking about mathematical concepts that are currently prominent in elementary schools from the perspective of teaching. Mathematical tasks include a deep analysis of concepts, consideration of children’s thinking, and investigations with technology. Topics include two and three dimensional geometry, transformations,area, volume, surface area, measurements, statistics, and probability.

Credits

3

Prerequisites

MATH 130

Offered

Every Spring

MATH 140 Quantitative Reasoning (MT)

For students with one or two years of high school algebra. This course is at the level of college algebra, but is not focused on algebra. It stresses application of mathematics in careers of non-scientists and in the everyday lives of educated citizens, covering basic mathematics, logic, and problem solving in the context of real-world applications.

Credits

3

Offered

Every Fall, Interim, and Spring

MATH 150 Pre-Calculus (MT)

Algebra review, functions and graphs, logarithmic and exponential functions, analytic geometry, trigonometric functions, trigonometric identities and equations, mathematical induction, complex numbers. Students completing this course are prepared to enter calculus.

Credits

4

Offered

Every Fall and Spring

MATH 151 Calculus I (MT)

Limits and continuity for functions of one real variable. Derivatives and integrals of algebraic, trigonometric, exponential, and logarithmic functions. Applications of the derivative. Introduction to related numerical methods.

Credits

4

Offered

Every Fall and Spring

MATH 152 Calculus II

Techniques of integration, numerical integration, and applications of integrals. Infinite series including Taylor series. Introduction to differential equations. Calculus in polar coordinates.

Credits

4

Offered

Every Fall and Spring, occasional Summers

MATH 153 Calculus III

The calculus of vector-valued functions, functions of several variables, and vector fields. Includes vector operations, equations of curves and surfaces in space, partial derivatives, multiple integrals, line integrals, surface integrals, and applications.

Credits

3

Offered

Every Spring

MATH 200 Foundations of Mathematics

Bridges the gap between computational, algorithmic mathematics courses and more abstract, theoretical courses. Emphasizes the structure of modern mathematics: axioms, postulates, definitions, examples conjectures, counterexamples, theorems, and proofs. Builds skill in reading and writing proofs. Includes careful treatment of sets, functions, relations, cardinality, and construction of the integers, and the rational, real, and complex number systems.

Credits

3

Prerequisites

MATH 152

Offered

Every Fall

MATH 220 Linear Algebra

Vector spaces, linear independence, basis and dimension, linear mappings, matrices, linear equations, determinants, Eigen values, and quadratic forms.

Credits

3

Prerequisites

MATH 152

Offered

Every Spring

MATH 280 Introduction into Statistics using R (MT)

 This course introduces descriptive and inferential statistics coupled with basic probability theory.  Both traditional (normal and t-distribution) and simulation approaches including confidence intervals and hypothesis testing on means (one-sample, two-sample, paired), proportions (one-sample, two-sample), regression, and correlation are covered. Students will be introduced to numerous examples of real-world applications of statistics that are designed to help you develop a conceptual understanding of statistics. R and R Studio (free statistical software) will be used for lab exercises and final projects. The concepts and techniques in this course serve as building blocks for the inference and modeling used in later courses.

Credits

3

Offered

Every Fall

MATH 305 Applied Regression

The quality of an applied course is measured by how well they can apply the techniques covered in the course to the solution of real problems encountered in their field of study. Consequently, we advocate moving on to new topics only after the students have demonstrated the ability (through testing) to apply the techniques under discussion. In-class consulting sessions, where a case study is presented and the students have the opportunity to diagnose the problem and recommend an appropriate method of analysis, are very helpful in teaching applied regression analysis. This approach is particularly useful in helping students master the difficult topic of model selection and model building and relating questions about the model to real-world questions. 

Credits

3

MATH 310 Differential Equations

Methods of solving first and second order differential equations, applications, systems of equations, series solutions, existence theorems, numerical methods, and partial differential equations.

Credits

3

Prerequisites

MATH 152

Offered

Every Fall

MATH 315 Probability and Statistics

Probability as a mathematical system, random variables and their distributions, limit theorems, statistical inference, estimation, decision theory and testing hypotheses.

Credits

3

Prerequisites

MATH 152

Offered

Every Fall

MATH 316 Statistical Inference

This course content develops the basic statistical techniques used in applied fields like engineering, and the physical and natural sciences. Principal topics include point and interval estimation; tests of hypotheses. Applications include one-way classification data and chi-square tests. This course act as a gateway to other higher-level statistical courses like Bayesian Statistics, Statistical Theory, and Design & Experiment. 

Credits

3

Prerequisites

MATH 315

Offered

Occasionally

Notes

This course is primarily made up of the statistics (not probability) content in M315 coupled with additional content for Actuaries Exams.

MATH 320 Discrete Structures

Topics to be selected from counting techniques, mathematical logic, set theory, data structures, graph theory, trees, directed graphs, algebraic structures, Boolean algebra, lattices, and optimization of discrete processes.

Credits

3

Prerequisites

MATH 151; COSC 210

Offered

Every Spring

MATH 325 Statistical Modeling

Students will learn about supervised and unsupervised learning (K-Means Clustering). They will be able to assess model accuracy. Students will be able to perform classification, in particular they will learn about Generative Models for Classification and Generalized Linear Models GLMs. Students will be able to perform Cross-Validation: Training and Test Set. Students will be able to make variable selection by applying Ridge or LASSO Regression.

Credits

3

MATH 327 Mathematical Foundations of Data Science

This course explores the mathematical foundations of algorithms used in the field of Data Science, typically taken after a course in mathematical statistics. It includes the study of classification and regression techniques, robust regression, decision trees, support vector machines, neural networks, cross-validation techniques, forecasting models, and Topological data analysis. The course includes a data-driven project that requires the student to propose a question and gather, clean, and analyze data to present a response to a real-world problem.

Credits

3

Prerequisites

MATH 220 and MATH 280

Offered

Occasionally

MATH 330 History of Mathematics (W)

The history of mathematics from ancient to modern times. The mathematicians, their times, their problems, and their tools. Major emphasis on the development of geometry, algebra, and calculus.

Credits

3

Prerequisites

MATH 200

Offered

Occasional Interims

MATH 335 Modern Geometry

A review of Euclidean geometry, an examination of deficiencies in Euclidean geometry, and an introduction to non-Euclidean geometrics. Axiomatic structure and methods of proof are emphasized.

Credits

3

Prerequisites

MATH 200

Offered

Occasional Interims

MATH 340 Abstract Algebra

A survey of the classical algebraic structures taking an axiomatic approach. Deals with the theory of groups and rings and associated structures, including subgroups, factor groups, direct sums of groups or rings, quotient rings, polynomical rings, ideals, and fields.

Credits

3

Prerequisites

MATH 200; MATH 220

Offered

Every other Fall, even years

MATH 345 Topology

An introduction to topological structures from point-set, differential, algebraic, and combinatorial points of view. Topics include continuity, connectedness, compactness, separation, dimension, homeomorphism, homology, homotopy, and classification of surfaces.

Credits

3

Prerequisites

MATH 200; MATH 220

Offered

Every other Spring, odd years

MATH 350 Real Analysis

This course develops the logical foundations underlying the calculus of real-valued functions of a single real variable. Topics include limits, continuity, uniform continuity, derivatives and integrals, sequences and series of numbers and functions, convergence, and uniform convergence.

Credits

3

Prerequisites

MATH 200; MATH 220

Offered

Occasionally

MATH 355 Complex Analysis

A study of the concepts of calculus for functions with domain and range in the complex numbers. The concepts are limits, continuity, derivatives, integrals, sequences, and series. Topics include Cauchy-Riemann equations, analytic functions, contour integrals, Cauchy integral formulas, Taylor and Laurent series, and special functions.

Credits

3

Prerequisites

MATH 200; MATH 220

Offered

Occasionally

MATH 397 TOPICS

Topics in Mathematics.

Credits

3

MATH 490 Senior Seminar

This course reviews and correlates the courses in the mathematics major. Each student is responsible for preparing the review of one area. Students also read papers from contemporary mathematics journals and present them to the class. The course uses the ETS mathematics major exam.

Credits

1

Prerequisites

MATH 200; MATH 220

Offered

Every Spring